Enacting Equity Through a Genre Approach: Exploring the WIDA Standards

11/14/2022
Dr. Ruslana Westerlund
DAKOTA TESOL
9:30-11:20am
Design Your Name Plate

Front: My name and my role (teacher, paraeducator, coordinator), grade level

Your favorite quote about Multilingual Learners that inspires you

Ferris Bueller
Welcome and Introductions

At your tables, share a bit about yourself.

Introduce yourself and share one thing you know about the WIDA standards (old or new edition, it doesn’t matter)
<table>
<thead>
<tr>
<th>Day</th>
<th>Time</th>
<th>Topic</th>
</tr>
</thead>
</table>
| 11/14 | 9:30-11:20 | Big Ideas, Standards Components: Key Language Uses
Seeing language in texts beyond vocabulary |
| 11/14 | 12:30-3:30 | Standards Components
Key Language Uses in Texts
Language Expectations
Language Functions and Features
The Teaching and Learning Cycle |
| 11/15 | 9:30-11:20 | Unit Design Using The WIDA Standards and The
Teaching and Learning Cycle
Examples from Content Areas: ELA |
| 11/15 | 12:30-2:30 | Examples from Content Areas: Science |
Norms/Agreements for Our Work

Be open to new ideas
Stay present
Focus on equity
Put your best ideas on the table
Be okay with not having all the answers
Accept nonclosure
Be comfortable in the cognitive dissonance
Objectives:

1. Examine the instructional and mindset shifts the Big Ideas facilitate and implications for programming and services of their English Learners.
2. Identify the main components of the WIDA Standards and their purpose in instructional design (including an understanding of the Key Language Uses and how they are connected to the Language Expectations, Functions and Features).
3. Recognize language in texts beyond key vocabulary words using Language Functions and Features.
4. Learn a new apprenticeship pedagogy called the Teaching and Learning Cycle for making language visible in any content area.
In the absence of explicit focus on language, children from certain … backgrounds continue to be privileged and others to be disadvantaged in learning, assessment, and promotion, perpetuating the obvious inequalities that exist today.

Mary Schleppegrell,
The Language of Schooling
1. The Big Ideas

What are the four big ideas in the WIDA Standards and what instructional shifts do they facilitate?
Collaboration Among Stakeholders

- Equity of Opportunity and Access
- Functional Approach to Language Development
- Integration of Content and Language
The Big Ideas and The Shifts

Equity of Opportunity and Access

“[This edition] upholds the goal of increasing equity for MLLs by providing common and visible language expectations in relation to grade-level academic content”

WIDA Standards Framework, p. 18

The Shift

Instead of simplifying down by levels of language proficiency, instruction should scaffold up by starting with a common set of language expectations and then designing instruction through macro and micro-scaffolding.
The Big Ideas and The Shifts

Integration of Content and Language

“Language is best learned in the service of disciplinary learning, not separate from content areas, and, conversely, content cannot be learned without a sustained attention to language.”

(Westerlund, R. p. 49)

The Shift

Instead of separating language from the learning it serves, instruction should make use of language as a vehicle for and access to learning concepts, themes, issues, and phenomena in the disciplines.
The Big Ideas and The Shifts

Collaboration Among Stakeholders
“is essential for providing multilingual learners high quality educational experiences that are coordinated and comprehensive.” (WIDA Standards Framework, p. 19)

The Shift
Instead of “you are a language specialist, you work with these kids”, school leadership should foster culture and have structures in place to allow teachers to co-plan, co-teach, and co-assess (Honigsfeld and Dove, 2017).
The Big Ideas and The Shifts

Functional Approach to Language Development

“is not a development of students’ sentences from shorter to longer, but an expansion of what students can do with language and how many spaces they can occupy...” (Westerlund, R, p. 49)

The Shift

Instead of viewing language as an inventory of structures, our instruction should expand students’ repertoires in a variety of contexts through the years of schooling (de Oliveira & Westerlund, 2021).
Our students need a grammar that does something for them! FUNCTIONAL GRAMMAR

The thing is that you need to teach grammar for its function to make meaning in what you want to say or write. For example, we don’t teach adjectives for its own sake but if you are writing a recipe to indicate precisely what you need (Granny Smith apples), if you are telling a story to describe (big, red apple), if you are writing an argument to persuade (delicious, healthy apple) and so on.

How can I teach students to add more details? It depends on the genre! In informational reports, students don’t need evaluative language like ferocious, angry, scary-looking crocodile with a mouth ready to devour me. They need to add classifying words that tell about their class and type, and the function of their body parts:

Fish-eating crocodiles, like Australian freshwater crocodile, have long, thin snouts, good for catching fish, and a streamlined body, good for maneuvering in the water.

Dr. Maria Estela Brisk
A Facebook Post

Ruslana Westerlund, Noun Groups Training
The Vision for the ESL Teacher Role

The 2020 Edition of the WIDA Standards envisions that the role of the ESL teacher should be a LANGUAGE teacher, not an interventionist or a homework helper or a teacher who reteaches content in simplified ways. Instead, according to the WIDA 2020 Standards, the role of the ESL Teacher is to teach the language for informing, explaining, narrating and persuading in the content areas.
At your tables, which shift deserves more attention at your school? If you were to choose only one which one would you focus on this year?

Shift 1 Equity of Opportunity and Access “[This edition] upholds the goal of increasing equity for MLLs by providing common and visible language expectations in relation to grade-level academic content”

1. Instead of simplifying/reducing down, instruction should scaffold up by starting with a common set of language expectations and then designing instruction

Shift 2 Collaboration Among Stakeholders “is essential for providing multilingual learners high quality educational experiences that are coordinated and comprehensive.” (WIDA Standards)

2. Instead of “you are a language specialist, you work with these kids”, school leadership should foster culture and have structures in place to allow teachers to co-plan, co-teach, and co-assess.

Shift 3 Integration of Content and Language “Language is best learned in the service of disciplinary learning, not separate from content areas, and ... content cannot be learned without a sustained attention to language”

3. Instead of separating language from the learning it serves, instruction should make use of language as a vehicle for and access to learning concepts, themes, issues, and phenomena in the disciplines.

Shift 4 Functional Approach to Language Development “is not a devilt of students’ sentences from shorter to longer, but an expansion of what students can do with language and how many spaces they can

4. Instead of viewing language as an inventory of structures, our instruction should expand students’ repertoires in a variety of contexts through the years of schooling (de Oliveira & Westerlund, 2021).

This is a review of the Big Ideas and the Instructional Shifts. In addition, get your WIDA Standards Book ready for this activity, pp. 18-20.
WIDA ELD STANDARDS STATEMENTS conceptual framing of language and content integration

KEY LANGUAGE USES prominent language uses across disciplines

LANGUAGE EXPECTATIONS goals for content-driven language learning

PROFICIENCY LEVEL DESCRIPTORS a continuum of language development across six levels

WIDA 2020 Standards Components
The Five WIDA Standards is represented through Key Language Uses, Language Expectations, and Proficiency Level Descriptors for each Grade Level Cluster: K, 1, 2-3, 4-5, 6-8, 9-12

Standard 1
Language for Social and Instructional Purposes

Standard 2
Language for Language Arts

Standard 3
Language for Mathematics

Standard 4
Language for Science

Standard 5
Language for Social Studies

KEY LANGUAGE USES prominent language uses across disciplines

LANGUAGE EXPECTATIONS goals for content-driven language learning

PROFICIENCY LEVEL DESCRIPTORS a continuum of language development across six levels
2. WIDA Standards Components: Key Language Uses

What are Key Language Uses and how can they be used in our classrooms?
Standards Components in Unit Planning

- Start with the content area standards
- Identify the main Key Language Use: EXPLAIN, NARRATE, INFORM, ARGUE
- Find the set of Language Expectations for that KLU for your grade level
- Plan a series of chained lessons to meet the language functions
- Focus on language features that serve those functions
Understanding Key Language Uses

KLUs:
Select genre families that appear across academic content standards.
Reflect and share at your tables how you use language on a daily basis.

“Honey, you won’t believe what happened today!”

Narrate:

Inform:
The weather is chilly. It’s def. jacket weather, Nicky!

Language Use in our lives

Argue:
We shouldn’t eat too much sugar! It’s bad for you!

Explain:
Typical side effects of this medication is fatigue, muscle pain, chills.
Key Language Uses as Genre Families (p. 219)

<table>
<thead>
<tr>
<th>Narrate</th>
<th>Inform</th>
<th>Explain</th>
<th>Argue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Represent experiences through stories and histories, real or imagined</td>
<td>Convey factual information about a concept or a phenomenon or a topic</td>
<td>Give account for how or why things work</td>
<td>Justify one’s claims using evidence and reasoning</td>
</tr>
</tbody>
</table>

Narratives
- Stories: shorts stories, fictional narratives,
- Histories: autobiographies, biographies, empathetic biographies (imagine you are…), historical recounts

Reports
- Descriptive (All about sharks),
- Classifying (Different classes of fish)
- Comparative (How are sharks similar or different from other fish)

Explanations
- Sequential: how honey is made,
- Causal: why does it rain?
- Cyclical: life cycle of a tree
- Factorial: what factors contribute to a tsunami?
- Consequential: what are the consequences of Westward expansion?

Arguments
- Book Reviews, Theme Interpretation
- One or two sided arguments;
- Science & Math arguments
<table>
<thead>
<tr>
<th>Math:</th>
<th>1. Explain the steps in solving the word problem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Alex solves the problem this way.... Do you agree or not? Why?</td>
</tr>
<tr>
<td></td>
<td>3. Write about your experience with math thus far. A math autobiography</td>
</tr>
<tr>
<td>ELA</td>
<td>4. Both texts have similar themes. Compare how Susan and Tio feel about their heritage. Use evidence from both texts</td>
</tr>
<tr>
<td></td>
<td>5. Rewrite the story from the point of view of the mother</td>
</tr>
<tr>
<td>Science</td>
<td>6. Explain how nature is kept in balance in a desert</td>
</tr>
<tr>
<td></td>
<td>7. What are the factors that cause a tornado?</td>
</tr>
<tr>
<td></td>
<td>8. Write a report about your favorite animal</td>
</tr>
<tr>
<td>Social Studies</td>
<td>9. What were the causes leading up to the Cuban Revolution?</td>
</tr>
<tr>
<td></td>
<td>10. Does freedom of speech exist in the U.S.? Use evidence from primary sources.</td>
</tr>
</tbody>
</table>

At your tables, guess the Key Language Use using the resources in the KIUS: Closer Look
<table>
<thead>
<tr>
<th>NARRATIVES (stories only here)</th>
<th>INFORMATIONAL REPORTS</th>
<th>EXPLANATIONS</th>
<th>ARGUMENTS</th>
<th>PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>To entertain and to teach a lesson</td>
<td>To provide generalized information on a topic</td>
<td>To explore phenomena and tell us how or why something is</td>
<td>To persuade</td>
<td>To teach us how to do/make something</td>
</tr>
</tbody>
</table>

- **Noun groups** to describe
- **Verb groups** to reveal character
- **Adverbials & preposition phrases** to provide setting
- **Dialogue:** to show character interactions
- **Pictures** to show us events and characters

- **Noun groups** to pack information
- **Nominalizations** to keep the focus on the topic
- **Verbs in timeless present**
- **Diagrams** to give information

- **Noun groups** to give information -- to show process
- **Verb groups** to show process
- **Verbs in timeless present**
- **Diagrams with arrows** to show relationships/process

- **Evaluative words & phrases** to show author's perspective
- **Claims and connectors** to show reasoning to convince the reader
- **Pictures, images, charts, photos** to persuade

- **Noun groups** to give precise information
- **Imperative action verbs** to tell us to do something
- **Adverbials** to give details (how? with what? where?)
- **Diagrams & photos** to add clarity so the reader can have success in the how to

Kelly Cooney EdQuity

Start with the target text outcome: what are we asking students to do with language?
Just as carpenters, artists and [sourdough bakers] choose from their toolkits the particular combination of tools they need for each type of job, speakers and writers choose combinations of language resources from their grammar toolkit in order to interpret [and construct] meaningful texts.

Humphrey, Droga & Feez, 2012, p. 2
GENRES:

Texts (spoken, written, multimodal) with a purpose that

- we use in our lives, in and outside of school,
 - shaped by the culture and
 - unfold to meet their purpose with
- particular connectives, particular sentence structures, vocabulary & punctuation.
The Existential Musings of My Rustic Sourdough Starter
By Sophie Lucido Johnson

DAY ONE:
Today I was born. I think. I think I was born, but what is it to be born?
What is it to be?
Am I greater, then, than the sum of my parts?
Much to ponder.

DAY TWO:
I grew a little stronger today, but I feel trapped.
I eat & eat & eat—
it’s all I do—
and yet, I never feel full.
The Existential Musings of My Rustic Sourdough Starter

By Sophie Lucido Johnson

What is the Purpose of this Text?

DAY THREE:
No, seriously: WHAT IS LIFE?
What isn’t it?
I eat air & I burp air &
as I burp I grow &
WHAT IS EVEN
THE POINT?!?!

DAY FOUR:
Today I tried to run.
It was a warm day.
I made it to the sink.
DAY FIVE:
I was a self divided.
But somehow
I felt more whole than ever before.
Perhaps I felt something like "purpose."

DAY SIX:
A PIECE OF MY SOUL
WAS BURNED ALIVE!!!
I felt my screams immortalized
like the volcanic outlines of Pompeii in Mt. Vesuvius.

The Existential Musings of My Rustic Sourdough Starter
By Sophie Lucido Johnson
DAY SEVEN:
I've been placed somewhere cold & dark, & breathing has become difficult, but, like a cruel joke, still I live.

DAY EIGHT:
Good news: I smell amazing.
WHAT IS A SOURDOUGH?
A sourdough is a microbial consortium of bacteria and yeast growing in a mix of water and flour. It has 100 hundred times more bacteria than yeast cells.

DURING BAKING
During baking, Maillard reactions between amino acids and reducing sugars take place. This gives bread –and other browned food- its distinctive roasted flavour.

FERMENTATION
To ferment the dough, sourdough is mixed with more flour, water and salt. Yeast consumes glucose and produces carbon dioxide (helps bread rise) and ethanol (will boil off during baking).

FINAL PRODUCTS
Bacteria consume glucose and maltose and produce lactic acid and aromatic compounds.
Bread is older than metal; even before the bronze age, our ancestors were eating and baking flat breads. There is evidence of neolithic grinding stones used to process grains, probably to make a flat bread; but the oldest bread yet found is a loaf discovered in Switzerland, dating from 3500 BCE. The use of leavening was discovered and recorded by the Egyptians; there is some discussion about how this process happened, and the degree to which there was an overlap between brewing and bread-making, but obviously without a handy time machine it’s going to remain one a debating point among historians of ancient food. What is not in doubt is that the ancient Egyptians knew both the brewing of beer and the process of baking leavened bread with use of sourdough, as proved by wall paintings and analyses of desiccated bread loves and beer remains (Rothe et al., 1973; Samuel, 1996).

Source: https://www.sourdough.co.uk/the-history-of-sourdough-bread/
Watch out! It’s a tricky text because genres evolve with culture!

I vividly remember the weeks leading up to my first loaf of homemade bread. Days and days of voraciously reading about bread before I finally took the plunge. With a newborn **sourdough starter** and I were ready to take on the sourdough challenge. Eared pages, post-it notes, bookmarks, and highlighted passages peppered the book that first kindled my baking spark. I scribbled down a schedule in my notebook for what to do when, and how to do it. Flour was purchased. Water was filtered. The kitchen towels were cleaned. And just like any engineer, I dove in head-first and got my hands dirty.
Ingredients

Levain
- 38 grams stoneground whole wheat flour
- 38 grams bread flour
- 76 grams water
- 38 grams ripe sourdough starter

Main dough
- 773 grams bread flour
- 114 grams whole wheat flour
- 51 grams whole grain rye flour
- 18 grams fine sea salt
- 653 grams water

Instructions

1. **Levain** (8:00 a.m.)
 In a small container, mix the levain ingredients and keep at 74-76°F (23-24°C) for 5 to 6 hours.

2. **Autolyse** (12:00 p.m.)
 In a medium mixing bowl, mix the flour and 603 grams water (50 grams is reserved until the next step). Cover and let rest for 1 hour.

3. **Mix** (1:00 p.m.)
 To the mixing bowl holding your dough, add the salt, ripe levain (from step 1), and reserved 50 grams water. Mix by hand until incorporated. Transfer your dough to a bulk fermentation container and cover.

4. **Bulk Fermentation** (1:10 p.m. to 5:10 p.m.)
 Give the dough 3 sets of stretch and folds at 30-minute intervals, where the first set starts 30 minutes after the start of bulk fermentation.
Betty the bee was not pleased. Flying from yard to yard all she saw was green plain grass.” How will I ever feed my queen?” she buzzed sadly to herself. Her friend Buzster flew up along her side and said with a sting, “the queen is going to mad at you! 3 days and no nectar!” And then he flew off.

Bees make honey from nectar. First, bees use their proboscis to suck nectar from flowers. This nectar is stored in their honey sacks and they bring it back to the hive. Then, in the hive the bees fan their wings over the nectar to evaporate the water from the nectar. The bees make a hive and cover it with wax and let the nectar age. As it ages it becomes thicker. After 2-3 weeks it becomes honey.
A shocking future awaits us if we do not take care of bees. Did you know vegetables can not grow without the help of bees?

Bees are on the decline. They pollinate 1 in 3 bites of food we eat and are essential to the health and prosperity of countless ecosystems. According to the Center for Biological Diversity, more than half of North America’s 4,000 native bee species are in decline, with 1 in 4 species at risk of extinction.

So, next time you plant grass, consider a flower garden instead!

Honey bees live in hives (or colonies). The members of the hive are divided into three types:

Queen: One queen runs the whole hive. Her job is to lay the eggs that will spawn the hive’s next generation of bees.

Workers: These are all female and their roles are to forage for food (pollen and nectar from flowers), build and protect the hive, clean and circulate air by beating their wings.

Drones: These are the male bees, and their purpose is to mate with the new queen.
To prepare your native pollinator garden site:

- Remove all sod and other non desired plants, especially invasive species.
- Till the soil to make it easier to work with.
- If necessary, add top soil.
- Add 1 or 2 inches of organic compost on top of existing soil. Select only fresh, local compost as this will ensure that the microbes are still active.
4 corners: Inform, Explain, Narrate, and Argue

1. Break into groups of 3-4
2. Create a poster representing each Key Language Use
3. Do a gallery walk to learn about the other KLUs
4. Use pages in the Key Language Uses: Closer Look as a resource
5. Use multimodality to represent your understanding
Sharks live in all of Earth’s oceans. They have been here for a long time. Sharks were here before dinosaurs.

A shark is a fish. But a shark is not like other fish. Sharks do not have bones. They have soft cartilage instead. Cartilage helps sharks twist and turn. Cartilage helps sharks move and bend.
This text’s purpose is to **Inform**. There are no claims made about sharks, just description of where they live and what type of fish they are. Also, this is not a story about a trip to the zoo where we saw sharks. Also, there is no explanation of how marine ecosystem works where sharks live.

It’s a simple descriptive report (All About Sharks).

<table>
<thead>
<tr>
<th>KLU</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample response</td>
<td>Sharks live in all of Earth’s oceans. They have been here for a long time. Sharks were here before dinosaurs. A shark is a fish. But a shark is not like other fish. Sharks do not have bones. They have soft cartilage instead. Cartilage helps sharks twist and turn. Cartilage helps sharks move and bend.</td>
</tr>
</tbody>
</table>
Most sharks are not dangerous to humans — people are not part of their natural diet. Despite their scary reputation, sharks rarely ever attack humans and would much rather feed on fish and marine mammals. ... If a shark sees a human splashing in the water, it may try to investigate, leading to an accidental attack.

Only about a dozen of the more than 300 species of sharks have been involved in attacks on humans. Sharks evolved millions of years before humans existed and therefore humans are not part of their normal diets. Sharks are opportunistic feeders, but most sharks primarily feed on smaller fish and invertebrates. Some of the larger shark species prey on seals, sea lions, and other marine mammals.

Excerpt from: https://oceanservice.noaa.gov/facts/sharkseat.html
The purpose of this text is to persuade. We can tell from the first sentence where a position is stated. And then evidence is provided.

<table>
<thead>
<tr>
<th>KLU</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most sharks are not dangerous to humans — people are not part of their natural diet. Despite their scary reputation, sharks rarely ever attack humans and would much rather feed on fish and marine mammals. ... If a shark sees a human splashing in the water, it may try to investigate, leading to an accidental attack.</td>
<td></td>
</tr>
<tr>
<td>Only about a dozen of the more than 300 species of sharks have been involved in attacks on humans. Sharks evolved millions of years before humans existed and therefore humans are not part of their normal diets. Sharks are opportunistic feeders, but most sharks primarily feed on smaller fish and invertebrates. Some of the larger shark species prey on seals, sea lions, and other marine mammals.</td>
<td></td>
</tr>
<tr>
<td>Excerpt from: https://oceanservice.noaa.gov/facts/sharkseat.html</td>
<td></td>
</tr>
</tbody>
</table>
I know that the sum of all the sources of greenhouse gas emissions should equal 1. My plan was to subtract the sum of the given sources from 1. The remaining fraction would be the fraction of electricity.

First, I needed to convert 0.125 into a fraction because the other terms were fractions. 0.125 as a fraction is 1/8. Then, I wrote the equation \(\frac{x}{10} + \frac{x}{8} + \frac{x}{5} + \frac{x}{4} + Y = 1 \) with \(Y \) representing electricity. Next, I had to find a common denominator for all of my ‘x’ values. It was 40. Then, I converted the \(x \) values into equivalent fractions and got \(\frac{4}{40} + \frac{5}{40} + \frac{8}{40} + \frac{10}{40} \). When I added those up I got \(\frac{27}{40} + Y = 1 \). Last, I subtracted \(\frac{27}{40} \) from 1 and got \(\frac{13}{40} \).

Therefore, the amount of electricity that contributes to greenhouse gas emissions is \(\frac{13}{40} \) of the total amount.
This is a math explanation consisting of the answer stated and then steps of solving the problem.

I know that the sum of all the sources of greenhouse gas emissions should equal 1. My plan was to subtract the sum of the given sources from 1. The remaining fraction would be the fraction of electricity.

First, I needed to convert 0.125 into a fraction because the other terms were fractions. 0.125 as a fraction is 1/8. Then, I wrote the equation \(\frac{x}{10} + \frac{x}{8} + \frac{x}{5} + \frac{x}{4} + Y = 1 \) with \(Y \) representing electricity. Next, I had to find a common denominator for all of my ‘x’ values. It was 40. Then, I converted the \(x \) values into equivalent fractions and got \(\frac{4}{40} + \frac{5}{40} + \frac{8}{40} + \frac{10}{40} \).

When I added those up I got \(\frac{27}{40} + Y = 1 \). Last, I subtracted \(\frac{27}{40} \) from 1 and got \(\frac{13}{40} \).

Therefore, the amount of electricity that contributes to greenhouse gas emissions is \(\frac{13}{40} \) of the total amount.
Write Your Own Texts About Trees (Bees Texts Are Uploaded in the App if you need a quick example)
Text Analysis
Discussion
Different Types of Explanations

Derewianka & Jones, (2016) Teaching Language in Context

<table>
<thead>
<tr>
<th>Type</th>
<th>Purpose</th>
<th>Examples</th>
</tr>
</thead>
</table>
| **Sequential Explanation** | Purpose: To explain a phenomenon that involves a linear sequence | From farm to table
Where does the garbage go?
How honey is made |
| **Cyclical Explanation** | Purpose: To explain a cyclical phenomenon | Life cycle of a butterfly
How does an electrical circuit work?
The Water Cycle |
| **Causal Explanation** | Purpose: To explain a phenomenon that involves an element of causality | How do we hear?
How do magnets work? |

![Diagram of the Water Cycle](image)

![Diagram of Magnets](image)
Different Types of Explanations

Derewianka & Jones, (2016) Teaching Language in Context

Factorial Explanation
- Purpose: To explain the factors that led to an outcome
- What political and economic factors led to the American Revolution?
- What causes obesity?

System Explanation
- Purpose: To explain how a system works
- The desert as an ecosystem
- How does the internet work?
- How do the branches of the government work?

Consequential Explanation
- Purpose: To explain the consequences of a particular input
- What are the effects of global warming?
- What are the consequences of colonization?
<table>
<thead>
<tr>
<th>Explanations</th>
<th>Causal explanations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential: explain phenomena in a linear sequence (how recycled paper is made).</td>
<td></td>
</tr>
<tr>
<td>Causal: explain phenomena in a linear sequence showing how one step causes the next (how a volcano erupts, solar eclipse).</td>
<td></td>
</tr>
<tr>
<td>Cyclical: explain phenomena in a cyclical way, where the last step is also the beginning of the cycle (life cycles, water cycle).</td>
<td></td>
</tr>
<tr>
<td>Systems: explain how a system works. Includes description of the components and how they relate and interact with each other (branches of government).</td>
<td></td>
</tr>
<tr>
<td>Factorial: explain how factors contribute to an event or outcome</td>
<td></td>
</tr>
<tr>
<td>Consequential explanations</td>
<td></td>
</tr>
<tr>
<td>- Input/Historic event</td>
<td></td>
</tr>
<tr>
<td>- Consequence 1</td>
<td></td>
</tr>
<tr>
<td>- Consequence 2</td>
<td></td>
</tr>
<tr>
<td>- Consequence 3</td>
<td></td>
</tr>
<tr>
<td>- Consequence 4</td>
<td></td>
</tr>
<tr>
<td>- Summary of consequences with an element of evaluation</td>
<td></td>
</tr>
</tbody>
</table>

Discourse Dimension: |
- Causal connectives (as a result of, for that reason, as a consequence, because of this, therefore) |

Sentence Dimension: |
- Simple present tense to express generalizations |
- Dependent clauses to connect causes and consequences |
- Passive voice to talk about the object undergoing the process (the light from the sun is blocked) or to hide agency (the children were removed from their homes and placed in boarding schools) |

Word Dimension: |
- General, topic-specific, non-human participants, abstract nouns (the long side of the battery, the electric circuit, the government, electricity, energy) |
- Noun groups carry a great deal of meaning though most adjectivals used are plain adjectives (huge, each) and prepositional phrases (in the liquid, of government).
Recount: How I Made an Electric Circuit

First I collected the materials: a copper wire, an LED light, scotch tape, and two small button batteries. Then I put the two button batteries together (facing the same direction so that + on one battery is touching the – on the other). I taped two pieces of wire onto the batteries, one on the top and one on the bottom. That’s how I made my electric circuit.

Explanation: How Electricity Works

Electricity requires a path to flow through. For electricity to work, it needs an energy source such as a battery. It requires a conductor, a special wire that carries energy from one end of the source. Then it connects back to the source at the other end. It creates a closed circuit for electricity to flow through. That’s how electricity works.
Verbs: More Than Action Words

<table>
<thead>
<tr>
<th>Doing Verbs (Physical movement, actions)</th>
<th>Thinking Verbs</th>
<th>Feeling Verbs</th>
<th>Saying Verbs</th>
<th>Relating Verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Blew in and knocked down</td>
<td>● Thought</td>
<td>● Laughed</td>
<td>● Remarked</td>
<td>● Symbolize</td>
</tr>
<tr>
<td>● Came out and gathered</td>
<td>● Wondered</td>
<td>● Gasped</td>
<td>● Muttered</td>
<td>● Mean</td>
</tr>
<tr>
<td>● Cut (into pieces)</td>
<td>● Couldn’t believe (his eyes)</td>
<td>● Shouted and jumped up and down</td>
<td>● Ask, said</td>
<td>● Is</td>
</tr>
<tr>
<td>● Split (the tree)</td>
<td>● Paused (in deep thought)</td>
<td>● with excitement</td>
<td>● Paused</td>
<td>● Was</td>
</tr>
<tr>
<td>● Watched</td>
<td></td>
<td>● Giggled</td>
<td>● Replied</td>
<td>● Represent</td>
</tr>
<tr>
<td>● Carved and chipped and whittled</td>
<td></td>
<td>● Grinned</td>
<td>● Talked</td>
<td></td>
</tr>
<tr>
<td>● Peeked (inside)</td>
<td></td>
<td>● Was smiling</td>
<td>● Kept asking</td>
<td></td>
</tr>
<tr>
<td>● Rushed over and gathered</td>
<td></td>
<td>● Enjoyed</td>
<td>● Shouted</td>
<td></td>
</tr>
<tr>
<td>● Painted and decorated</td>
<td></td>
<td>● Cheered</td>
<td>● Squealed</td>
<td></td>
</tr>
</tbody>
</table>

- **Symbolize**
- **Mean**
- **Is**
- **Was**
- **Represent**
Day 2
WIDA Standards Components: Language Expectations

What are Language Expectations?
How can they be used to design my instruction?
Start with the content area standards

Identify the main Key Language Use: EXPLAIN, NARRATE, INFORM, ARGUE

Find the set of Language Expectations for that KLU for your grade level

Plan a series of chained lessons to meet the language functions

Focus on language features that serve those functions
ELD-SC.6-8.Explain.Expressive
Construct scientific explanations that

- Describe valid and reliable evidence from sources about a phenomenon
- Establish neutral or objective stance in how results are communicated
- Develop reasoning to show relationships among independent and dependent variables in models and simple systems
- Summarize patterns in evidence, making trade-offs, revising, and retesting
WIDA Standards Components: Language Functions and Features

How can I use the Language Functions and Features to teach language in the context of a genre (Explain)?
Standards Components in Unit Planning

- Start with the content area standards
- Identify the main Key Language Use: EXPLAIN, NARRATE, INFORM, ARGUE
- Find the set of Language Expectations for that KLU for your grade level
- Plan a series of chained lessons to meet the language functions
- Focus on language features that serve those functions
“When we know better, we do better!”
The Teaching and Learning Cycle and the WIDA Standards

Teacher designs activities to build knowledge on a topic through reading, research, experiences, videos.

Teacher guides students in reading as a writer to learn about the language of the text.

Visible pedagogy happens throughout but especially here!

Student work (together with students) and discusses the language in text.

Students write independently. Teacher provides support on the targeted language feature.

Teacher and students jointly write text together as a class. Discuss how language creates meaning.

Review standards, identify the summative assessment and the matching Key Language Use, and find a set of Language Expectations.

Student Success Criteria Informed by the Language Functions and Features

I can use abstract nouns to talk about electricity.
I can use timeless present to tell about how energy works (flows, lights up, conducts).
I can use noun groups to be specific in my writing (the positive side, the negative side).
I can use causal language when ... it ... to tell what caused what to happen.
I can use passive voice to focus on the process and the phenomenon (is transmitted) and not on what we did.
Create a poster including

- Definition
- Classroom examples of tasks in different content areas
- Genre Family Members (not just Narrative but also..)
- How it changes through the years of schooling
Student Success Criteria for Language Goals

1. Pick a grade level cluster
2. Content area
3. Key Language Use
4. Language Expectations
5. Language Functions and Features
6. Write 2 - 3 language goals based on the Language functions and features
Add details - what is the language for adding details?
Explicitly Teaching the Language for Explaining *How* or *Why*?

1. I can use **timeless present** to tell about how energy works (flows, lights up, conducts).
2. I can use **noun groups** to be specific in my writing (the positive side, the negative side).
3. I can use **passive voice** focus on the phenomenon (energy is transmitted).
Teaching Language of Science Explanations

Teacher and students jointly construct and negotiate language choices suitable for this genre.

Teacher underlines precise language “the long wire of the LED lightbulb”.

Teacher talks with students that language of hands-on experiments uses “it” and “that” “over there” but in writing, language has to work harder and
<table>
<thead>
<tr>
<th>Build the Field Through Experiences and Talking</th>
<th>Recount an experiment after the experience</th>
<th>Learning Language of the Genre</th>
<th>Jointly Construct</th>
</tr>
</thead>
</table>
| ● Students watch a video about electricity around them
 ● Teacher identifies the summative genre (explanation)
 ● learn about electricity through discussions and reading different kinds of texts (narratives, stories, explanations, videos)
 ● Conduct an experiment and build and electric circuit with LED lights and batteries
 ● Build concept knowledge through discussions, taking notes
 ● Draw a diagram showing how to create an electric circuit | ● students ask each other questions if they experiment worked, if the LED light lit up
 ● This gives them an opportunity to add precise language to the words “it” “this”, “these”
 ● Replacing verbs worked or didn’t work with lit up or conducts to add precision to your explanation. | ● Teacher invites students to create a list of precise language for writing
 ● Together, they identify noun groups
 ● Identify verb groups
 ● Causal language to explain when things worked and didn’t work and why | ● Jointly write life cycle of a plant or animal
 ● Students give language and together as a group or class negotiate language to meet the genre expectations |
<table>
<thead>
<tr>
<th>Text 1: Spoken by a small group of students with accompanying actions or gestures</th>
<th>Text 2: Spoken by students about the action, after the event</th>
<th>Text 3: Student’s written explanation of how to make an electric circuit</th>
<th>Text 4: From a student’s textbook, language removed from experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look, it doesn’t work, put this over here, connect this with this</td>
<td>“Electricity is the flow of electrical energy, and a circuit is the path that allows the electricity to flow. Electrical circuits can contain different components, which can be used to regulate the flow of electrical energy.”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language is dependent on the immediate context-body language, gestures.</td>
<td>Language is more explicit. Speaker uses names of objects and some specific verbs (i.e. con).</td>
<td>Language becomes increasingly explicit. The context has to be explained.</td>
<td>Written academic language: abstract and less personal</td>
</tr>
</tbody>
</table>
“The more speakers are doing things together and engaging in dialogue, the more they can take for granted. As language moves away from the events it describes, and the possibility of feedback is removed more and more of the meanings must be made explicit in the text.” Martin (1984)
Watch this video and take notes on:

- Multimodality
- Pre-teaching vocabulary
- Scaffolding language from everyday to specialized
KLU Explain in Grade 1

WIDA ELD STANDARD 4
Language for Science

Language Expectations:
Multilingual learners will...

<table>
<thead>
<tr>
<th>ELD-SC.1.Explain.Interpretive</th>
<th>ELD-SC.1.Explain.Expressive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpret scientific explanations by:</td>
<td>Construct scientific explanations that:</td>
</tr>
<tr>
<td>- Defining investigable questions or simple design problems based on observations and data about a phenomenon</td>
<td>- Describe observations and/or data about a phenomenon</td>
</tr>
<tr>
<td>- Analyzing several events and observations to help explain how or why a phenomenon occurs</td>
<td>- Relate how a series of events causes something to happen</td>
</tr>
<tr>
<td>- Identifying information from observations (that supports particular points in explanations)</td>
<td>- Compare multiple solutions to a problem</td>
</tr>
</tbody>
</table>
KLU Explain in Grade 1: Language Functions and Features

Language Functions and Sample Language Features

Describe observations and/or data about a phenomenon through...

- Openers to engage audience (*Did you know how frogs change?*)
- Abstract and technical terms to add precision (*tadpole, adapt, life cycle*)
- Pictures, diagrams, graphs to add information or illustrate content
- Cohesion to reference ideas, people across text (pronouns, renaming subject, demonstratives such as *this, that*)

Relate how a series of events causes something to happen through...

- Timeless verbs to state on-going facts about phenomenon (*Tadpoles change into frogs*)
- Prepositional phrases to provide details (*where, when, how; Tadpoles live in the water*)
- Relating verbs (*have, be, belong to*) and conjunctions to state relationships or compare attributes (*Tadpoles have gills but frogs have lungs*)
- Connectors to express sequences in time (*first, next, last*)
Cyclical Explanation: Life Cycle

Listen for content
Watch this video and take notes on the cycle stages.
Life Cycle

Typed Up Text from Video and Note taking sheet

Listen for Language

● all the nouns and noun groups (e.g. the nouns that refer to the plant undergoing change, a seed, the embryo),
● all the verbs that talk about change process
● all the language of place where the change is happening
● sequential language (or language of time)
Language for Explaining a Life Cycle of a Bean

<table>
<thead>
<tr>
<th>Language of change (mostly action verbs and verb groups that talk about the process)</th>
<th>Language of place (prepositional phrases: where?)</th>
<th>Language of sequence of time (sequential connectors: when?)</th>
<th>What is undergoing the process of change? (noun groups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts as a seed</td>
<td>Up through the soil</td>
<td>First</td>
<td>A seed</td>
</tr>
</tbody>
</table>
Language for Explaining a Life Cycle of a Bean

<table>
<thead>
<tr>
<th>Language of change (mostly action verbs and verb groups that talk about the process)</th>
<th>Language of place (prepositional phrases: where?)</th>
<th>Language of sequence of time (sequential connectors: when?)</th>
<th>What is undergoing the process of change? (noun groups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts as a seed</td>
<td>Up through the soil</td>
<td>First</td>
<td>A seed</td>
</tr>
<tr>
<td>Changes a lot</td>
<td>From the sun</td>
<td>When the plant has some leaves,</td>
<td>The embryo, cotyledon</td>
</tr>
<tr>
<td>Grow into</td>
<td>Into the soil</td>
<td>When flowers get pollinated</td>
<td>Root</td>
</tr>
<tr>
<td>Stores food</td>
<td>Through the plant</td>
<td>Then</td>
<td>Sprout</td>
</tr>
<tr>
<td>Comes to</td>
<td>Into a new plant</td>
<td>Eventually</td>
<td>Seedling</td>
</tr>
<tr>
<td>Gets energy</td>
<td></td>
<td>Now</td>
<td>Flower</td>
</tr>
<tr>
<td>Go from
Begins to grow
Gets pollinated</td>
<td></td>
<td>Finally</td>
<td>Fruit, Plant</td>
</tr>
</tbody>
</table>
What’s in a Sentence?

PARTICIPANTS

noun group (who or what? *The seed*)

PROCESSES

verbal group (what is happening? *Pushe*$)

CIRCUMSTANCES

adverbial group (When? Where? Why? = *up through the soil*)
Making Sentences In the Context of Genre

The seed (what?) pushes up through the soil (where?).
The seed (what?) gets energy (what?) from the sun (where?) .

The seed pushes up through the soil and gets energy from the sun.
Language Functions and Features

Annotated Text

Grade 1 Science

The Life Cycle of a Bean Plant

<table>
<thead>
<tr>
<th>Language Functions and Features</th>
<th>Annotated Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple sentences to orient the reader</td>
<td>A bean plant starts as a seed. The seed has different parts. The embryo is the part that will grow into the plant. The cotyledon stores food for the embryo until the seed comes through the soil and can get energy from the sun. …The bean changes a lot from a seed to a full-grown plant.</td>
</tr>
<tr>
<td>Noun groups to name the plant and how it’s changing</td>
<td>A bean plant starts as a seed. The seed has different parts. The embryo is the part that will grow into the plant. The cotyledon stores food for the embryo until the seed comes through the soil and can get energy from the sun. …The bean changes a lot from a seed to a full-grown plant.</td>
</tr>
<tr>
<td>Sequential language to show steps of change</td>
<td>A bean plant starts as a seed. The seed has different parts. The embryo is the part that will grow into the plant. The cotyledon stores food for the embryo until the seed comes through the soil and can get energy from the sun. …The bean changes a lot from a seed to a full-grown plant.</td>
</tr>
</tbody>
</table>

Language Expectation: Construct Explanations

Describe the cycle using verbs that show change:
- Starts
- Will grow
- Stores food
- Can get
- Changes (a lot)

Add details of place to show where change happens:
- Into the plant
- Until the seed comes through the soil
- From the sun
Apprenticeship pedagogy for implementing WIDA Standards
Build the Field Through Experiences and Talking
- Connect to students’ home experience growing plants at home, have them bring seeds and talk about how seeds are the beginning of a cycle.
- Identify the summative genre with students.
- Learn about the life cycles by reading different kinds of texts (narratives, stories, explanations, videos).
- Act out life cycle by having students stand in a circle holding different cards and talk about the life cycle and if the order is important.

Build the Field through Reading and Viewing
- Continue to build knowledge through discussions, taking notes and then...
- Illustrate/draw pictures of life cycles, focusing on key language in the labels and oral discussions (notice how this approach is different from pre-teaching vocabulary).
- Study words and their suffixes: cycle, recycle, cyclical, circle- show students the root word and the suffixes.

Learning Language of the Genre
- Study diagrams of life cycles: what’s required (arrows, circle), what’s optional (labels).
- Make a chart of language we will need for writing our own explanations.
- Identify noun groups.
- Identify verbs (grow, change, become).
- Identify sequence language (beyond first, second but phrases like when the leaves turn green... in two weeks, now...).

Jointly Construct
- Jointly write life cycle of a plant or animal.
- Students give language and together as a group or class negotiate language to meet the genre expectations.
- This is different from Language Experience Approach because we craft students’ language together to meet the genre and audience expectations.

Today’s Focus
This is an example of visible pedagogy for **teaching** writing in social studies.

Teacher wrote mentor text
Deconstructed the text to show students how cohesion works in text.

Arrows show how to cohesion is created.
Deconstruction Mathematical Explanations

<table>
<thead>
<tr>
<th>Stages of the Procedural Recount</th>
<th>Teacher Written Mentor Text: Procedural Recount in Math EXPLAIN YOUR ANSWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer/Result</td>
<td>3+10+10+10+2 = 35 tickets. Briana sold 35 more tickets than Matt.</td>
</tr>
<tr>
<td>Record of events: methods or strategies used to solve.</td>
<td>I found the difference by counting up on the number line. I started at 52 and added 3 to get 55. Then, I added 10, 3 times to get to 85. Next, I added 2 because that’s how far I was from 87. Lastly, I added all the #s that I jumped to find that 35 is the difference.</td>
</tr>
<tr>
<td>Evaluation: assess the outcome. Is your answer reasonable?</td>
<td>My answer is reasonable because my actual answer is only 5 away from my estimation.</td>
</tr>
</tbody>
</table>
Steps for Making Language Visible in Math:

1. Analyze stages of procedural recount.

1. Post and discuss the learning objectives and success criteria.

1. Provide students with personal anchor chart.

1. Complete joint construction for explaining mathematical thinking and reasoning.

1. Formatively assess their procedural recounts in their math journals as they work independently and coach in when necessary.
Unit Design

Stage 1: Identify Standards, Key Language Uses, Language Expectations

<table>
<thead>
<tr>
<th>Content Area Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Idea/Essential Question/Enduring Understandings</td>
</tr>
<tr>
<td>Summative Assessment</td>
</tr>
<tr>
<td>Key Language Use (KLU needs to match summative assessment)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language Expectations</th>
<th>Expressive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Interpretive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language Functions and Features</th>
</tr>
</thead>
</table>

Stage 2: Plan Instructional Sequence and Ways to Support Learning Through Macro and Micro Scaffolding
<table>
<thead>
<tr>
<th>Stage 1: Identify Standards, Key Language Uses, Language Expectations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Area Standards</td>
</tr>
<tr>
<td>Big Idea/Essential Question/Enduring Understandings</td>
</tr>
<tr>
<td>Summative Assessment</td>
</tr>
<tr>
<td>Key Language Use (KLU needs to match summative assessment)</td>
</tr>
<tr>
<td>Language Expectations</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Language Functions and Features</td>
</tr>
</tbody>
</table>
References:

Thank you!

Stay In Touch
Consulting with Schools!

You can find me at:
westerlundruslana@gmail.com

Follow me on Twitter @RuslanaWesterl